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Problem Definition
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ρ - matter density
E - specific internal energy 
T - temperature
κ - heat conductivity factor 

– velocity vector),,( wvuu =
v

P - pressure
– radius vector( )zyxr ,,=

r

S - strain tensor deviator 
D - strain rate tensor

Sp(SD) - first invariant of tensor SD

H

r
- magnetic field strength vector

S = 0 - gas dynamics model 

S = SYn, P = PΓ - elastoplastic model
S = SYn+SB, P = PΓ+PB - elastoviscoplastic model
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Elastoplastic model
• Hooke law in the differential form:

where G - shear modulus;
• Mises flow rule:               .
 Elastoviscoplastic model

PB – the viscous pressure, SB – the strain tensor deviator
µ1,µ2 – the values of dynamic viscosity
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3D Techniques developed in VNIIEF
• TMK - technique to solve 3D gas dynamics and

elastoplastic problems on unstructured
polyhedral Lagrange meshes

• MEDUZA-3D - free-Lagrange technique
centering of all gas dynamics values on the
node, variable difference template for the
numerical integration of differential equations.

• TIM - serves for 3D continuum mechanics
computations on polyhedral unstructured
Lagrange meshes. It allows computations to be
performed on meshes with an arbitrary number
of node connections.
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TMK Technique
• Explicit difference scheme
• Velocities specified at mesh nodes
• Density, energy, pressure and strain specified in

cells
• Four cells converging in any mesh node
• In order to maintain the mesh in good condition

used the method of elastic impact
• Local polyhedral cell reconstruction technique

3D mesh cell  Dirichlet mesh contained in a cube 
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MEDUZA-3D Technique
• Generalization of the MEDUZA-2D

technique for 2D problems
• Tetrahedron mesh
• Centering of all gas dynamics values on

the node
• Variable difference template
• Possibility to change the mesh topology in

running a problem
• Boundaries are described by mixed cells

calculated by the lumping method
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MEDUZA-3D Technique

Six triangles of the
integration surface related

to node 3

Tetrahedration of a 
hexahedron 
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TIM Technique
• Meshes with an arbitrary number of node

connections
• Valid both on the Dirichlet-Voronoi unstructured

polyhedral meshes, and on hexahedral meshes
and unstructured polyhedral meshes having an
arbitrary number of neighborhoods in a node

• Uses the same computational algorithm for all
the meshes

• Intended for solving gas dynamics, time-
dependent elastoplasticity,
magnetohydrodynamics and heat conductivity
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TIM Technique
In generating a finite-difference scheme for
solving system of differential equations, one
uses the integro-interpolation process
assuming that
• P, ρ, E, q, Sij, ε, H, T – assigned to the

cells centers and are constant within them;
• x,y,z,u,v,w are assigned to the nodes;
• faces are described by their piecewise

linear representation
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TIM Technique – Gas dynamics
and Elastoplasticity

• Fully conservative explicit difference
scheme with second order of accuracy in
space and time

• Artificial viscosity uses a combination of
the quadratic and linear viscosity.

• The velocities of mesh nodes are defined
using the law of conservation of
momentum in the integral form.
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TIM Technique – Ideal
Magnetohydrodynamics

• Magnetic field strength vector is defined in the
centers of mesh cells

• Current density and electromagnetic force
vectors are assigned to mesh nodes

• Explicit difference scheme

computational cell Ω, cell volume V
The integrals in the right-hand member of this equation are substituted
by finite sums.
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TIM Technique – Heat conductivity
• Value of temperature is defined in cell centers
• Heat flow vector is defined at the nodes
• The difference scheme is constructed using the

process of generalized derivation of
discontinuous functions and is implicit and
conservative

• The approximation of the differential operator in
the heat conductivity equation has the second
order of accuracy in space

• The resulting difference system of linear
equations has a symmetric and positively definite
matrix

• The system of equations is solved by the iteration
method of conjugate gradients using different
types of preconditioners
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TIM Technique - Types of initial meshes

The Dirichlet-Voronoi mesh A hexahedral mesh 

Unstructured meshes derived from a 2D mesh

Example of a mesh having
hexahedral and Dirichlet-
Voronoi cells in one
domain
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TIM Technique - Mesh maintenance
Method 1. Mesh maintenance is performed by
imposition of differentiable connections:
• meshes containing “stellar” cells

• meshes with convex
dihedral cell angles

• meshes with convex
polyhedral cell angles



15 of 29

TIM Technique - Mesh maintenance

• Method 2: Local adjustments of 3D
meshes, that rest upon two operations –
partitioning and integration of cells.

• Method 3 is based upon the process of
velocity field smoothing in mesh nodes to
suppress high-frequency perturbations.
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Examples of Calculations
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Decay of an arbitrary discontinuity in gas
dynamics settings (TIM)

Let an ideal gas, whose conditions are defined
as follows: left – PI=2.5; uI=0, right - PII=0.5;
uII=-2.8026. ρ=1, γ=1.4

Pressure and density distribution at t=0.24
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ρ0=1. g/cm3,  =0,  Е0= Р0=Sxiy j  =0. , G = 15 GPa, Y0=1 GPa.

Рrp = 5 GPa

The plane stress wave problem (TIM)
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The plane stress wave problem (TIM)
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Velocity profiles

Density distribution profiles 

Pressure and stress profiles

T=0.24
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The Richtmyer-Meshkov instability
growth problem (MEDUZA-3D)
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The problem of bar impact against a wall –
Gas dynamics simulation (TIM and TMK)

initial geometry 

t

t=3.5 µsec t=7 µsec 

• Material – ideal gas with γ=1.4; ρ0=7.8 g/cm3

• Projectile – 2 x 2 x 10 cm parallelepiped, cube having a 10-
cm edge

• mesh having 31,400 computational cells Dirichlet-Voronoi
• The projectile travels at a velocity of 10 km/s.
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The problem of bar impact against a wall –
Elastoplastic simulation (TIM and TMK)

Material – steel (Mie-Gruneisen equation of state).
ρ0=7.8 g/cm3  c 0=4.9 km/s n=5, Γ=1.66;
δs=-2.5 GPa; G=81 GPa; Y=1.05 GPa
The projectile travels at a velocity of 1 km/s.

t=10 µsec t=30 µsec t=40 µsec 
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The ellipsoid compression problem (TIM)
Hexahedral mesh (8,000 cells)

    t=15
       t=9

 t=20
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The ellipsoid compression problem (TIM)

Polyhedral mesh (22,575 cells)

    t=15
       t=9

 t=20
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The cooling cube problem (TIM)
• Cube [0,1]x[0,1]x[0,1].
• Temperature within cube is T=1, temperature at

its boundary is T=0.
• Analytical solution to the problem:

• Hexahedral mesh with 20 cells on each
direction.

• Time step of 0.0005.
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Analytical vs. numerical solution for t=0.05

The cooling cube problem (TIM)
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Problem of a spherical piston in a dipole
magnetic field (TIM)
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Problem of a spherical piston in a
dipole magnetic field (TIM)

Values of Hx and Hr at the point of time t=0.31
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THANK YOU


